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1.  INTRODUCTION

It is now widely believed that hadrons are composites built of
quarks and gluons whose interactions are governed by quantum chromo-
~ dynamics (QCD). The nature of this internal structure is the key to an
understanding of hadronic properties, both at short and long distances.
- However the connection between the hadrons and their constituents often
seems vague in applications of perturbative QCD. If we are to push
 beyond.perturbati0n theory, we require a conceptual framework within
_  which these notions can be made precise. A particularly convenient and
intuitive framework is based upon the Fock state decomposition of
hadronic states which arises naturally in the 'light-cone quantization'
of QCD. In this approach, a hadron is characterized by a set of Fock
state wave fuhctions, the probability amplitudes for finding different
combinations of bare quarks and gluons in the hadron at a given 'light-
cone time' t=t+2z. These wave functions provide the essential 1ink
Ibetween hadronic phenomena at short distances (perturbative} and at long
“distances (non-perturbative).

The use of 1ight-cone quantization and equal 1 wave functions,
‘rather than the more familiar equal t wave functions, is necessary for
'a sensible Fock state expansion. In light-cone quantization, the Fock
state vacuum is an eigenstate of the full light-cone Hamiltonian

3

(H, 2P = pO-p » conjugate to 1). Consequently all of the bare guanta

LC
in an hadronic Fock state are associated with the hadron; none are
» discdnnected elements of the vacuum (Fig. 1). It is also convenient to

~use t-ordered light-cone perturbation theory (LCPTh), in place of
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covariant perturbation theory, for much of the analysis of light-cone
dominated processes such as deep inelastic scattering, or }arge-gL
exclusive reactions. Light-cone quantization and perturbation theory
are briefly reviewed in Appendix A.

In these lectures, we explore the properties of the Fock state wave
functions, and their relation to measurable quantitiegpz In Section 2,
we describe the Fock state basis and wave functions in greater.detail.

We examine general properties of the wave functions, and the implications
'of.the renormalization group in this context. We also discuss briefly a
number of processes -n+—>uv, ﬂ°->yy, deep inelastic scattering,... —
using this Tanguage.

In Section 3 we review the analysis of exclusive processes involving
transfer of large momenta.3 This includes a derivation of the basic
formulae and a discussion of the complications due to end-point and pinch
_singu]arities. Large P, exclusive processes provide one of the best
tools for probing the valence wavefunctions of hadrons, as well as an
~important testing ground for perturbative QCD.

Finally in Section 4 we discuss bound states of heavy quarks
(y,T,...). These mesons are unique in that we have considerable under-
standing of their internal structure, largely due to the apparent
predominance of the QQ Fock state. We examine the reasons for this, and
discuss the ways in which we can exploit this understanding to study both
non-perturbative and perturbative features of (QCD. As a footnote to fhfs

section, we also discuss in Appendix B the significance of perturbative

gxpansions in QCD focusing on the choice of definition for ag. We propose a new |
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procedure which provides a natural criterion for the convergence of such

expansions.

2. The Fock State Description of Hadrons

A. Definitions
At any given light-cone time 1=t+2z, we can define a set of basis

states {Appendix A )

0>

i1

— + +
lqq: KisAs> = b (Eqk})d (52A2)|0> (2.1)

where b+,d+,... are the Fourier transforms of the unrenormalized field

operators at time 1, and where 54==(k+"z(k0-k3),

th

E:)i is the three-
momentum of the i~ parton and Ai its helicity. Here k" is always
positive, and the Fock states are normalized such that

<k|g> = 2k+(2n)363ﬂg-5). Of course the elements, other than the vacuum,

- of this Fock state basis are not eigenstates of the full Hamiltonian

HLC(==P'). However they form a useful basis for studying the physical

states of the theory. A pion, for example, 1is described by a state

+ I |qGg> ¥ (2.2a)

[m> = L |ag> v L
qdy

- +
a5 qqg/m

qq/m

or to be more precise, for a pion with momentum P = (P+,EL)(=$P'=(EE+M§)/P+),

[m:PR > = ﬁ—“‘“‘dxide"’i In: X PY xR +k A A;) (2.2b)
oy _n’)\i 3 /x_i ]6-{[3 n: Xi ’X"i.l- 1327 wn/#xi,lsl_i, i | .
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where the sum is over all Fock states and helicities, and where

T dx. =T dx, 8{1-Zx, )
‘L B i !
, ) - (2.3)
~ ] 3.2
rig dK ; T dk ;16776 (?&j)

enforce three-momentum conservation. Notice that wave function

wﬂfﬁ (xi,kli,ki), the amplitude for finding bare partons with momenta
(x1P+, xiEL-&gLi), is independent of the pion's momentum. This special

feature of equal T wave functions is not surprising since X the
longitudinal momentum fraction carried by the parton (Ofgxig'l), and
K i its momentum ‘transverse' to the pion's direction of motion, are

frame independent quantities.

Throughout this analysis, we employ the physical Tight-cone gauge,

n-A==A+==O, for the gluon field. Use of such gauges result in well known

simplifications in the perturbative analysis of light-cone dominated
processes. Furthermore, they are indispensible if one desires a simple,
intuitive Fock space, for there are neither negative norm gauge boson
states nor ghost states in At =0 gauge. Thus each term in the

normalization condition

~ dxidZKLi 2
e L GE TR (2.4)

Z

n Ai

(which follows from <m:P|m:P'> = 2P+(2n)363(E;-Ef)) is positive.
Any hadron state, such as |m>, must be an eigenstate of the

Hamiltonian. Consequently, when working in a frame in which P_= (1,08)

T A ST P T ST A P A e s T AT
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and P; = Mﬁ, the state |m™ satisfies an equation

2
(MTr - HLC) fm> = 0

Projecting this onto the various Fock states <qq], <qqg|, ... results in

an infinite number of coupled integral (eigenvalue) equations

- W — <qqiV|qg><qq|Vigag>. .. _
r kzmz v (<qq[V|qg><qq|V|qqg> P
Y

2 - — —_
M- f X i =y <qqg|V|qg> ... Y999 (2.5)

- - -
- . -
-

Y L * J "

where V is the interaction part of H

Lc Diagrammatically, V invo]ves'
completely inducible interactions — i.e. diagrams having no internal
propagators — coupling the Fock states (Fig. 2). 1In principle these
equations determine the hadronic spectrum and wave functions.

The bulk of the probability in a non-relativistic system, such as
positronium or the T, is in a single Fock state — here in [ee> and [bBS
respectively. In such systems one obtains a single equation for the ‘
.dominant wave function by tracing over the remaining Fock states. Thus,

for positronium, we have (Fig. 3)4

2 Kitmg L T 2
" - =) l,be—e—(x,kJ_)=de J—{a—g Vorr(Xsky3ysky sM )ulys2 ). (2.6)
0 ¢

The effects of alil higher Fock states are included in Veff’ the sum of all
two-part1c1é irreducible interaction kernels — i.e. diagrams having no
- internal two-particle propagators (Fig.3b). The effective potential,

Veff'bVCou1omb’ is 1ittie modified by higher Fock states, so this
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procedure and others closely related to it (e.g. Bethe-Salpeter equation)
are well warranted. However, higher Fock states are most likely quite
important for a 1ight-quark hadron, and consequently Veff cannot help

but be very complex in this case. In particu]ar,-retardation effects
must then become significant, as is evident from the normalization

condition for the valence Fock state wave function:

a2
dx.d"k, . 3V
~ 2 *|° Toff
% IH“JH_.JL W (X-,k .’}\_) =1 - < |—=—|¥,>
li i 16ﬁ3 I vyt 1 | v 8M2 v
(2.7)

<1

— the expectation of 8Veff/8M2 equals the possibility of higher (i.e. non-
valence) Fock states. So one 1is forced to consider the full coupled
channel problem {Eq.(2.5)) when analyzing hadrons. Traditional two-body
(or three-body) bound state formalisms seem inappropriate in highly

relativistic, strong coupling theories.

B. General Properties of Fock State Wave Functions

One major advantage of the Fock state description of a hadron is

that much intuition exists about the behavior of bound state wave functions.

So, while the task of solving Eq.(2.5) for QCD remains formidable, there
is nevertheless much we can say about the hadronic wave functions. An
important feature that is immediately evident from Eq.{2.5) is that all

wave functions have the general form

- 1
9 (g sk yq Aq) = 1 (V¥) (2.8)

i kot e
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Consequently ¥ tends to vanish when

2. 2

k™+m
e=M2~§ L > e (2.9)

i
This is intuitively plausibie. In The Fock state expansion, we think of

the bare quanta as being on mass shell —

2 , 2
Keg * i 2

~but of f (1ight-cone) energy shell. Parameter ¢ measures how far off

energy shell a Fock state is, and thus we see that a physical particle

has 1ittle probability of being in a Fock state far off shell. In general

£ is large when kij or m? is large, or X; small — i.e. the wave function
. 2 2
should vanish as KLi,mi'*m or x1-+0.

Formally these constraints appear as boundary conditions on the
wave functions, and are related to self-adjointness of the Hamiltonian.

Notice for example that the expectation value of the free Hamiltonian,

kZ+m
g|-t—| ., is finite only if
1 1

2 2
Kij VplXp Kygorg) >0 as koyoe

(2.10)

wn(x-i ,k_n-,}\i)—*ﬂ as X_i +0

‘As we shall see in the next section, neither of these constraints is

satisfied in perturbative QCD unless we introduce ultraviolet

~ (k,>=) and infrared (x~0) regulators.

T R Y PR [P
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A further source of intuition about wave functions is provided by
the physics of non-relativistic bound states (<v> << c¢). In the rest
frame (P+=P'=M, P =(0), equal time (t) and equal light-cone time
(t=t+z/c) are almost identical for a non-relativistic system since the
speed of light is effectively infinite. Consequently the usual (equal
time) Schrddinger wave function should be almost the same as the light-

th

cone wave function. To make this connection, notice that the i con-

stituent has longitudinal momentum

+ 0, .3

i

3
i

R

2
m, +0(m1.v ) + k

where the energy k? is just the mass plus small corrections, due to

3

kinetic and potential energy, of O(m.ivz) << k3 mO(m_iv). Thus if we write

i
S R R

iiM' is essentially equal to k? for the parton, and a SchrEid'inger wave
function is then converted to a 1light-cone wave function simply by
replacing k?—ri}.M. This is also evident when it is noted that all energy
denominators have the form

2 K2 e ki+ (RM)Z

M- -I = 2M EN R. T

i i i i

when 21. << X Consequently one expects non-relativistic wave functions to

be strongly peaked at

m

I =
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with &Li’ iiM<a:mi, in the same way Schrodinger wave functions are peaked
at Tow k; (<<m;). This is well illustrated by the wave function for ground

.state positronium or hydrogen (valid for kf,(xeM-me)2<<m§):

3%

My~ 72 8my

¥(x, .k ) = { , ] (2.11)
et 1) (K (x M- ) v8)?

wherely==amR, and LN is the reduced mass. Such reasoning has immediate
implications for hadron physics. For example, the charmed quark in a

D meson tends to carry most of the meson's longitudinal momentum
(xcrumC/Mbel), and therefore fragementation functions should be broader

(in z) for D mesons than for w mesons.

C. Renormalization; Truncated Fock Space 5

The basic ansatz of perturbative QCD is that the short distance
behavior of the theory is perturbative; only perturbative interactions
are sufficiently singular to contribute at short distances. Consequently
wave functions behave in much the same way as perturbative amplitudes
in LCPTh when kij->m (see Section 3). Such a comparison (Fig. 4) indicates,
for example, that wqaml/kf and gy v 1/k for k. large. This
behavior violates boundary conditions (2.10)}, and leads to infinities
in the unitarity sum (2.4), energy expectation values, and in the wave
functions themselves. Of course this is not unexpected, given that the
wave functions and the theory are as yet unrenormalized.

To make the theory finite, we truncate the Fock space-by in effect

discarding all Fock states with light-cone energy (Eq.(2.9))|s{3JA2.‘
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This ultraviolet cut-off can be introduced by using Pauli-Villars and
related regulators, so as to preserve Poincaré invariance and gauge

X . 6 . .
invariance. The end result is that all internal loop integrations are

finite, and the wave functions become well behaved for Kf>-A2 — e.g.,
4 3 2 2
'*bq‘q"“]/k.l. and wqagm'l/k_,_for kg >> A7

Usually one takes A-« when computing. However the key physical
characteristic of renormalizable theories is that this cut-off has no
effect on the results for any process provided only that A is much larger
than all maSs scales, energies, and so on relevant to the process of
interest. Fock states with lEIf:AZ need never be explicitly included;
all low-energy effects due to them can be absorbed into the coupling
constants, masses, etc. appearing in an effective Lagrangian (or

Hamiltonian) for the truncated theory — e.g.

1M = 8- ga-n(a)hy P2+ 0(fo-Fy+...)

These bare parameters vary with A in the usual way, as more or less of
the high energy Fock states are absorbed:

2 d A
AR OO nlh),

In general, non-renormalizable interactions appear as well, but these are
suppressed by powers of 1/4, as is evident from simple dimensional

arguments. Notice also that the effective Lagrangian can change radically

as M passes thresholds for new heavy quarks, or say for quark substructure.

The bare parameters — g{A), m{p), ... — are the effective couptings
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and masses of the theory at energies of order A (i.e. distances ~ 1/A).
Indeed, as we shall see, a process or quantity in which only a single
scale Q is relevant is most naturally expressed in terms of the couplings,
masses, wave functions, etc. of the theory with cut-off A~Q. OFf coﬁrse
one must compute with A>>Q, but the dominant effect of vertex and self-
energy corrections is to replace g(4), m(A),w(A)... by 9(Q), m(Q), w(Q)...
Thus.as Q is increased, ever finer structure is unveiled in the wave
functions and in the theory. Also we are always dealing with a finite
cut-off, so that couplings, masses, and in particular wave functions are
both well defined and well behaved.

The dependence of the wave functions w(A)(xi,kli,Ai) on A for

; I i
fixed x; and Kk (kj; <<A%) is multiplicative:
() Z(A) P2 )
A — j . -
wn (xi’k.ti’)\'i) _]; ziﬂo’ .(‘Un 0 (xi’kl'i’l'i) (2.]2)

where ZgA) js the usual wave function renormalization constant for the

jth parton. This formula is easily understood by recallingthat Zgn)

probability of finding a 'bare' parton in a 'dressed' parton. Ako it follows

is the

‘that 0< Zgﬂ)f 1. Furthermore, Zgh) generally decreases with increasing A
since the effective phase space, and therefore the probability, for the
multi-parton Fock states in a dressed parton increases with A. Although
the probability shifts from Fock state to Fock state with varying A, the

total probability is always conserved:

R LG L TR T T T R LA I LR e e T p T
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no, i 167 2

2
. dx.d"k . 2
z JII LAl lﬂ)r(lﬁ)(xi,knsli)lz = 1+0[1“[;-—]

One final modification of the theory is required. The polarization
sum for gluons in A+==0 gauge is singular as k+==x->0:
n k\)+n\)ku

*
- . d
Z Eu(k_s}\)ev(_lf;s)\) gu\) +

(2.13)
A . ‘

X

where k = (x,ki) and kK = gf/x. As a result, wave functions for states
with gluons diverge as-xg1u0n-+0, again contrary to the boundary conditions
(2.10). However the singularity in (2.13) is to some extent an artifact

of‘Tight—cone gauge. It is properly regulated by replacing 7

[ S IR 2 18
X" 2{()&1‘6)" (x-ia)"} (2.18)

Physical amplitudes or cross sections are independent of & provided it is

sufficiently small, which impties that gluons decouple when xg1u0n5;6
for some small 6. Thus in effect the wave function does vanish as
xgluon'*O; we can use regulator (2.14), with a small but non-zero ¢, to
remove gluons with xg & from the wave function. Typically the cut-off
point must be 5{5<K;>/Q where <k,> is some average of the gluon's KLP
and Q is the momentum scale of the probe. So as Q increases, SO doeé
the number of ‘wee' gluons. Notice finally that <k, > can never Qanish,
since very long wavelength gluons cannot couple to a color singlet wave

function. Thus, with finite ¢ and A cut-offs, ali Fock state wave functions

are well behaved both as xi->0 and as kg ;-

A
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D. Calculating

In principle, the hadronic wave functions determine all of the
properties of a hadron. Here we illustrate the relation between the
wave functions and measurable quantities by briefly examining a number
of processes, particularly for pions. These examples also demonstrate
the calﬁu]ationa] rules for using wave functions — i.e. an amplitude

involving Fock state wn, describing a hadron with Bf=(P+,EL), has the

form
dx, d%, . : L P R ks )
z Jﬁ — P (X: oK, s A T (x:P »X:P +k . A (2.15)
i J;; 16Tr3 ntti i n'"4 LI SR & B _

where Tn is the irreducible scattering amplitude with the hadron replaced
by Fock state n. If only the valence wave function is to be used,Tn is
irreducible with respect to the valance Fock state only {e.g. no reducible
gq propagators for m); while otherwise contributions from all Fock states

must be summed, and Tn is compietely irreducibie.

> UV
The Teptonic width of the 7> is one of the simplest of all processes

because it involves only the qq Fock state. The sole contribution is

from
0|y + 1775 v pre
<0|9 v —= > = -
‘/2 d T
dxdk Vol k7 1 -
=J — i iok,) S 5——(+++¢)]
16m Z\Tx /2K )

where nc==3 is the number of colors, and fW=:93 MeV. Thus we

P T VO SRS PO N T P 17 0 P11 1 1) UV 0L 00 TN 111009 LN 1 0 M 1 1 (L UL UL IR LARULLIL AL B LR O L T T TR UL R L RN Y T ST R R SR S
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have 1 dzk fﬂ

(4) -
d k) = —— 2.1
I X LGW3 Vg (%5K, ) > (2.16)

This result must be independent of cut-off A up to corrections of order
AZ/AZ, where A is some typical hadronic scale (g 1 GeV). Eq.(2.16) is an
jmportant constraint on the normalization of the qq wave function, indica-
ting among other things that there is a finite probability for finding

a pure qqg state in the pion.

- Form Factor

An exact expression for the pion's electromagnetic form factor is

(Fig. 5)8
2 dxidg (s (A)
F'i'T(q.l.) = L Le JH_-"_“B-"* ) (X 7\1)111 (x-i sk-u- s}\.l)
no: g Mio1em » 2n .
#hyq 5 2 (2.17a)

A >>q‘L

where eq is the charge of the struck quark and where

~ k;j"xiql*'qi. for the struck guark
kli"x1q4. for all other partons :

~ %
As in Eq.(2.2b), the transverse momenta Ky appearing as arguments in ¢

correspond not to the full transverse momenta of the partons, but rather

to the full k minus x.q,, to account for the motion of the pion. In

the 1imit q, -0 (i.e. k »k,), the right hand side of (2.17a) becomes
identical to the unitarity sum (Eq.(2.4), and therefore F (0)-—1 The

form factor at large q, is discussed at length in Section 3.
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Deep Inelastic Scattering (Ttrri)

To leading order in aS(Q), the pion's structure functions are
determined by the t-ordered diagrams in Fig.6a. Furthermore, only the

region m2<<|4i<<02(1-x) contributes to this order (Q2==q2). This has

two important consequences: first, we can neglect k, relative to q,
to leading order; and second, we can set the ultraviolet cut-off
A~ Q since only Fock states with KE<3:Q2 are important (again to leading

order only). The structure functions are then

Fz(x,Q) _ 2

z et G, (x,Q) (2.18a)

MFy Q) ~ 5= € Gy

where, from Fig. 6a,

2 :
_ dx.d%k .
oynl® = 3 [T = D0k 2012 3 sl (2.18)

n,Ai i 16w n/m b=a

is the number (density) of partons of type a with longitudinal momentum

fraction x (the I is over all partons of type a in Fock state n). Eq.{2.18b)
b
leads immediately to a very simple interpretation of the structure function

moments:

1 - + ., b n+ (Q)
(o)y (iD") >
de e (x,0) = <ﬂ|¢a(:PI)n12 o
"] ™

a/m (2.19)

where the matrix element is evaluated with ultraviolet cut-off A=0Q, and

where D+ = 8+ in Tight-cone gauge. Thus the Q dependence of the moments is

 determined by the cut-off dependence of {twist-two) local operators.

Relation {2.18a) is corrected in O(RS(Q)) and beyond by diagrams

such as that in Fig. 6b, which contributes only when &Lmtlﬁn A+==O gauge).

Diagrams 1ike that in Fig. 6¢ are suppressed by powers of T/QZ due to the

T NP 1OV RSN TP R 1 109N P P A o N L LT I JIREIUD 1 IPVRE DB 1300 M0 HE 1000 NEPAOYR P RSP R LI 0 EMOT MR PSR 1 A [0 03 IR PR R PR -£1 T s R RSP 1 1 B a0 w3410 o+ -
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additional hard propagators absent in the leading terms.
Although all Fock states contribute to the structure functions, it is
1ikely that the valence state dominates near x=1. This region involves

2
Fock states far off-shell: <e>n- KXW 2w as x>1 (cf Eq.2.9). If

T-x
perturbative interactions dominate here, the x~ 1 behavior of the wave
function is approximated by that of the simplest connected interaction
kernel (Fig.7), just as for the large k, behavior. This implies (for an

arbitrary hadron H)8

Ggﬁﬂt n, (1-—x)2ns"1*'!Ai as x-1 '_ (2.20)

where ng js the number of spectator partons (= 1,2 for mesons, baryons)

and A is the difference between the struck quark's helicity and that of“
the hadron {and where QCD evolution has not been included). Clearly
the valence state, for which ng is smallest, is most important as x-1.
The (1—x)3 behavior suggested by Eq.(2.20) for protons is consistent with
experiment, and there is some evidence for the helicity dependence
predicted. Unfortunately, however, the situation is complicated by non-
perturbative contributions, which could well be important down to very
small 1-x. Any non-perturbative wave function which is a strongly peaked

2
function of €==M2-—§ E*ﬂg——- gives (EQ-(2-18b))9

1 1

Gnon-pert N (1—x)2ns'] Fle

o/M ) as x-1 (2.21)

min
m n°
3 . - _ i i i . Ny - -
with e . V-7 Since F vanishes quickly as e s x> - the

perturbative effects (Eq.2.20) ultimately dominate. However, to the extent

TR TR R

T
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- that quark masses are negiigible (i.e. for 1~x>>m2/<kf_>), this ansatz, at

least, gives important non-perturbative corrections.

Py
*
The v n°+vy vertex (Fig.8) can be parameterized in terms of the

7° -y transition form factor Fm(02=~q2):

- 2 pPq°
ruv + ie“ F (Q )euvpc q

The techniques of Section 3, when applied to FﬂY’ show that only the qq
Fock state is relevant as Q2+w.” Surprisingly, this is also the case for
very low szo(mﬁ), given that m_ is much smaller than the typical
momentum scale, A, governing pionic wave functions. This allows us to

relate the n°+w decay rate,

directly to the gqq wave function of the pion.
There are two basic types of contribution to F’"‘Y(O)’ as illustrated

in Fig. 9. The first (Fig.9a) involves the direct annihilation of the

qq into two photons: 2
)2y - T(a)c,
F a ) = ..._..._.__a__JL.._.. -I = 0
1 2 N
= - ,r- - A 1
? (e ed) (f) j]6n3 7 ( X,k ) Zz(A)
. e*x(q_l_(]-x)+k4_) +[x+.+('l-x)J (2.22)
(g,xq)(q,(1-x) + kJ_)2 ky= -k
Al - e2) 1 M0
. ¢ty d L 2_ 2
&+ L 8-rr2 idx —qg-(j——zzA as 3 =q"->90

N "’“mlﬂﬂlmmﬂmlllr'lml\mlﬂllll|\|HHIMIIM‘I|WW'H|I|!MMMH.MIIWI“‘N|l"l"l‘l'"'l' LR L LRI B LR AT T B T T T e T R R T T P T TR T R e S U TR
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where the ZéA) is due to vertex and propagator renormalizations, and
A>> X,

The second contribution has one photon coupling ‘inside' the pion's
wave function — i.e. strong interactions occur between the photoh
interactions (Fig.9b). We can treat this photon as an external field
which is approximately constant throughout the pion's volume, since the
photon's wavelength (fb]/mﬂ) is assumed to be much larger than the pion

radius (~1/1). Now a fermion propagator in a constant external field is

modified only by a phase:

_ 1
SA(x-y) - <y| lP’_ek_m |x>
-
= <y| e eh ap Jrlm | x>
= e-'i&(_‘,'—x)-l-\ SF(X—.Y)-

Consequently the qq wave function for a pion in this field is modified by

a phase e—1ey-A where y is the qq separation. To avoid double counting
Fig. 9a, this phase is applied to the truncated wave function (i.e.

without an external qgq propagator),

s

k) = 2 ¥k

qq

and furthermore only the first order term is required for Fig. 8b —i.e.

v Fys 3 (4)
e iey A I'IT_)-.-.‘/E?—E'ﬁ'E; ‘-an (X,k_L).

b i i L m AR 5,

PO



-19-

where iey*A-+e —/ ak in momentum space, and ql-+o is assumed. Thus the

u
second contribution becomes (Fig. 10)

i i+
(b) a2y . _ S l(b
Fbl(?) - - oL

iez(quq4)
Jﬁ'(ez-ez) 2
Ll cud fdx d kL { e w(A)(x k)} x{1-x)
2i(e, xq,) ]Gﬂ & ak ZéA) _ki
Iy X,q, +k, v, {1-x,29 - k
" i._{t4i ) ),ﬂ%5 A - s + (++q-+)g
v1- X X /1-x

]

as qL:+0. The angular integral is easily done, giving

‘/ﬁ—-(eZ_eZ) 1 o«
i s = fon fad 5 gy k) iy 7 P (0)
0 0 2

Thus the complete my form factor at Q=0 is

me-e2y bV oyWixoy (a2
: c''u d qq iR )
41 o 22 A
The data for 1°~vy is well fit by the PCAC prediction!s
S 2_ 2y 1
Frp(0) = - " n_(ef-ef) 2

and so we have yet another constraint on the qg wave function for a pion:

1

(A)(x 0 ) YN A
d qq o ¢ = 2.23
i X Z;EM fr (2.23)

Ll Ll bl d L DR L LRI (UL TR UL T L RN T T T R T P R A TR RN R T T T LR e T R R T At R TR T T NSRS LU RIS (IR L e e e
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Constraints such as Egs.(2.16) and {(2.23) are important in the
phenomenological construction of hadronic wave functions. ~For examp]e,'

a simple ansatz for the pion's non-perturbative valence wave function is

2,2
A - -5k x(1-x)}
wgﬁ)(x,kL) - A e D K /x(1-x

where A~ a GeV. Egs.(2.16) and (2.23) then imply
T &
T {4wf )
T
From Eq.(2.4), we can compute the probability of finding a pion in its
valence state for this ansatz;
z{t)
P _— =
qq/m 4

T

while from Eq.(2.17) we can calculate the 'vadius' of the valence state: 4

(Rq-a-/ﬂ)2 = 18b2 = zéA) 13 gev~2

If the valence state is comparable in size to the pion, the probability
Zéﬂ) of finding a bare quark in a dressed quark must be near one, from
this equation, and in that case anyﬂ'“1/4' One could (and should) go
on to study the x~ 1 behavior of the 7 structure function, the form
factor at large 02, etc. with this ansatz, and with others. In this way

one hopes to develop a deeper understanding of the detaited structure of

hadrons.
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3.  EXCLUSIVE PROCESSES IN QCD

A. Introduction

In this section we review the analysis of exclusive processes with
large momentum transfer. Generally one finds that such an amp1itude
factors into a convolution of quark distribution ampiitudes $(x5,Q),
one for each hadron, with a Hard scattering amplitude T,. The pion's
electromagnetic form factor, for example, can be written as!»3

. T 1
FA@) = [ex [ay 67060) Ty(oy,0) Q00 G
c 0 4]

Here TH is the scattering amplitude but with the pions replaced by
collinear qq pairs (i.e., by their valence partons), while the process
independent distribution amp1itude ¢ﬁ(x,Q) is just the probability

amplitude for finding the qq Fock state in the pion (with xq==x and

ﬁi=1~x):]5 ,
d k
¢ﬂ(x,Q)==J;E;§-wé§}ﬂ(x,KL). (3.2a)
_ (dz” _ixz"/2 5 (Q)
= e <0|y(0) y( 2)|m>
J4W | | z+==z¢'= 0 (3.2b)
pi= 1

The k, integration in (3.2) is cut off by the ultraviolet cut-off A=Q

implicit in w(Q); only Fock states with energies |e|% Q2 are important.
T

The distribution amplitude is only weakly dependent on Q, as is

evident from the evolution equation

]
¢ —§§-¢ﬂ(x,0) = jdy Vy.a (Q)) ¢ (y:,0Q).
oQ 0 (3.3a)

V(x,Y505(Q)) = o {0) Vq(x,y) +aZ(QV,(x.y) + ...

‘“mlml‘ﬂl‘""I'Illﬂllwﬂlﬂ'llllﬂ'mmﬂmw‘IIHlﬂllmMmmlﬂllwImmrmrllllmml\|I|I|ml|n|I"\I1|M|!\l|||mll||l|"|l""'\mmlllw'"mn| VO VN PR N EIAN: SIEE 1B IIAUENE BUEXEAR L LN EEUAR E 1D [0 IR0 BB MM 1M 11 1 00000 1k s elum 3 mg 18 e et pm g 18 e
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which we shall derive. The bulk of the Q dependence is in TH. This

hard scattering amplitude is defined to be collinear irreducible —-i.é.
all mass singularities are systematica]]y subtracted out {and absorbed
into the ¢'s). Therefore we can neglect all masses in TH, leaving Q as

the only scale. The amplitude must then have the general form
_ 1
TH(xi "y'i Q) = EE f(x'i »Y3 :G-S(Q)) (3-3b)

where, from simple dimensional arguments, n is the total number of
jnitial and final partons less 4. The pion form factor (i.e. em~em
where n=6-4) falls as 1/Q2, up to logarithmic factors, according to this
rule. A second consequence of neglecting masses is that total quark
helicity is cqnserved in TH when the gluons are vector bosons, as in QCD.
Since ¢ carries no helicity, by its definition (3.2), the helicity of
the hadron equals the sum of the helicities of ifs valence partons'in TH'
Thus hadronic helicity is conserved in exclusive processes for 1arge Qz.
In the following sections we illustrate the derivation of these
results by examining the pion form factor to leading order. We also’
examine some of the problems which arise in hadron-hadron scattering,
certain baryon form factors, etc. due to various singularities in TH.'
The phenomenological impiications of this formalism are discussed by

Stan Brodsky in his talks to this meeting.

B. An Example: The Meson Form Factor

The meson form factor {Eq.{2.17))can be rewritten in terms of the

*
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qq wave function alone {cf Eq.{2.15)):

2
3

T(y,2 5%,k 39 )
vy(T-y)x(1-x)

£ *x
2y y,2)) WMk (3.0)

) = | = dzak‘ J ik

16% 167

— * . _
Here T is the sum of all qg irreducible LCPTh amplitudes for vy +qq-+qq

(Fig. 11), and the ultraviolet cut-off is A2>o-Q2,

Consider first the disconnected part of T (Fig. 11a), ignoring

renormalization diagrams for the moment. It gives a contribution

2

:

d~k

Jax [ vtk v 000 ¥k @.5)
v

to F,. As Q2= ji+a5 two regions of phase space dominate in (3.5) —

a) kg <<Q where w(A)(x,kJ) is large

4) is large

. (ﬁ)*

b) k + ('l-x)q_L«Q where (x,k, + {1-x)q
— since the wave functions are strongly peaked at Tow transverse momentum.

. . (A)* .
In region a), k, can be neglected in y (x,KL4—(1-x)q*) until
*

KLn,(1-x)Q at which point w(ﬂ) begins to cut of the K, integration. Thus
in region a), we can approximate (3.5) by

{(1-x)Q d2k

1
fdx w(A)*(x,n_x)qL) J - = w("\)(x,k_l_) (3.6a)
o

— the bulk of the integral coming from kil<<102-+w. Similarly we obtain

TR TYR A RPN PP W03 ) SN AU PR )8 4000000 WA AR 0 O 000 AP O NI REEA R0 Y BT B MR TS 7910 VLS IR 1816 (g0 (IO ML Ee 000 8 rems e onn o e o e v e
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for region b)

L S ) (1)
dx{ = k)Y ,-(1- 3.6b
i xd[ 3 Pk )Y b (x, - { X)ql) (3.6b)

These approximations are valid up to corrections oft](i/ﬂJIQZ } when
wfu1/k2, the crude expectation in QCD.
Egs.{3.6) can be further simplified by using the bound state equation

)

(2.6) for the valence wave function w(A)(x,(l-x)ql_:

1

2
d2 V_co{x,(1-x)q 3¥.2 }
w(ﬂ)(x,(1_x)ql) = deJ a eff L e
0

3 2 1-X w(A)(Ysi_L)

16w -4, %

As above, the dominant contribution here is from 21;0<Q(1~y), S0 we can

approximate this equation by

| 1 (1-y)q 42
OV ee(x, (1-x)q, 5,0) d2

o) (x, (10)a ) = oy Sy —LWye) 3.7)
Yo "qu—3££ ’ 16n

to leading log order. It is readily demonstrated that the gq irreducibte
potential Veff is free of mass singularities in light-cone gauge.
Consequently all loop momenta are of order g or larger, and
Veff(x,(]—x)ql}y,ﬂ)lcan be computed perturbatively. Combining Egs.(3.6) and

(3.7) we arrive at a simple expression for {3.5):

71
- -
de Idy ¢, (¥> (1-y)Q) Tyly>%.Q ) ¢, (x,(1-x)Q) (3.8)
o 0
where the unrencrmaiized quark distribution amplitude ¢0 is
[dekz "
P (X,Q)'—“ 2= A X,k s 3.9
° J 16n° k) (3.9)
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and Ty, is the LCPTh amplitude for " +qi~q§ depicted in Fig. 13 (divided

by v¥(1-y)x{1-x) ).
In addition to {3.5), the connected parts Tc of T contribute to (3.4)

as Q+«. By the same reasoning used above, we can neglect %, and k,
relative to q, in Tc(y,&L;x,Kl}qJ) to obtain a formula identical to

(3.8) but with %H replaced by (Fig. 13)

< _ Tc(yso;xso;ql)
He A=y x(-x)

Again Tc is free of mass singularities {in At =0 gauge) and can be computed
perturbatively. Still ignoring renormalization terms, the otherwise
complete result is therefore

1 1
(0% = [ ax Jay Lop(ya(1-9)Q) egTa(y,x.0) 6, (xa(1-x)0)
0 o (3.10)

* 0
+9,(y>¥Q) g5 Ty(1-y>1-%,Q) ¢, (x,x0)}
where the hard scattering amplitude is to Towest order
) 167:CF0LS(A) 1

Ta(y:st) = :I:H'i'?H - Qz ﬁ-y)('i-x) » (3.11)

the Born amplitude for a collinear qq pair to scatter with the photon, and
where the two terms in Eq.(3.10) arise from the photon hitting either the
quark or the antiquark.

Finally we must consider the effects of vertex and propagator corrections
in TH(Fig.14). fach of these involves propagators off-shell by mQZ and so

all loop momenta are of order Q or larger (in At =0 gauge). It is a

trivial but important consequence of renormalizability that the bare

il DL UL LT DT D LR B o y
UL VUM P00 B 0 1 AP0 00 1 00001001 | 1100 A P 000 8 4 1 TS 80
S LUL B RUU LU LS R T I T KLU VLR g

ML A o i |
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vertices and propagators are then modified only by 1"'ac1:cir'$]6

70
1

2@
;

74

i .
EIKS— for vertices
i

for propagators

(3.12)

up to corrections of O(QS(Q)), where Zgh) and Z§Q) are the usual renormal-
jzation constants with ultraviolet cut-offs A and Q respectiveiy.

Thus in leading order Tg is replaced by (Fig.14)

Q) A 40 (@

0
EQ qu)H{(;Y WH

where Z%%) renormalizes quark-gluon vertices, and ZgA) and Zéﬁ) renormalize

the quark and gluon propagators. Here the photon-quark vertex correction
cancels the quark propagator correction, by the Ward identity. We have
also used the fact that o (A) zgﬁ)(zgﬂ)/zgfrﬁ))z is A independent. So

Eq.(3.10) is corrected to give
) 1 1 .
(@) = [ox [ay (6700900 egylyx,0) ¢ (s (1-x)0)
o O (3.13)
+ (g+q)}

in leading order, where now

16%CFa (Q) 1
Z i

TH(y,x,Q) (3.14)

R AT S R AT

s e,

Tk T T e
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and

(Q) Q% 2
Z dk
2 A
¢(x,Q) = ZéA) J 16-;2 o )(x,k_k). (3.15)

Since the bulk of the integral in (3.15) comes from KE<<:Q2, we can use

Eq.(2.12) to redefine

2
dk
; w(Q)(x,kﬁ. (3.16)

167

¢(x,Q) = J

where now the k cut-off {at~Q) is imp]icit'rather than explicit. Eas.
(3.13)-(3.16) now have the general form proposed in the introduction
(Egs.{3.1)-(3.3)).

Comparing Egs.(3.9) and (3.11) to Egs.(3.16) and (3.14), we see that
the major effect of the renormalization corrections is to replace
'as(A) by aS(Q) and w(A)by w(Q). This is exactly what was expected from
our general discussion of renormalization (Section 2.C). The only physical
momentum scale in TH is Q and so uS(Q) is the natural expansion parameter.
Furfhermore TH only probes structure in the wave functions down to
distances of 0(1/Q). Thus the wave function w(Q), defined in the theory
with cut-off Q, incorporates hadronic structure over all distance scales
relevant to the physical process. Structure at distances much smaller than
1/Q is irrelevant except insofar as it determines aS(Q), m(Q) ... etc.

The leading order result (3.14) for TH is consistent with the
dimensional counting predictions for the pion form factor. These rules

also show why it is that only the valence Fock state is relevant for large

tHenwmn: !
VU P ORI R0 AT B Y O A Q0 R ORTY 0 BP0 11 6RO 00 00 1[0 i 41 0100 0 0 A | A N 1Y N1 R F GRS B b e
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QZ. For example the hard scattering amplitude for scattering a qqqq

{collinear) state has four additional partons and so must fall as 1/QG;this
amplitude has many more far off-shell PDQZ) internal propagators than
does the qg amplitude. States with extra gluons must be treated with
special care. For example the hard scattering amplitude in Fig. 15 has
only one additional denominator (v 02), while the numerator is modified
by a factor U £ uneeq coupled to the giuon polarization €. So this
amplitude is suppressed by'be-q/Qthich in 1ight-cone gauge (i.e €+==0)
is € +q /Q rué, in accordance with dimensional counting. However, other
gauges can have e q/Q fue q /Q e QZ/Q in which case the amplitude is
not suppressed. In these gauges any number of 'y gluons must be included
in the pion Fock states, even in leading order. The absence of such

spurious longitudinal gluons in 1ight-cone gauge is'another important

advantage of this gauge.

C. The Quark Distribution Amplitude

A1l of the pion's low energy properties relevant for Fﬂ(Qz) as
Q2->w are Tumped into the quark distribution amplitude ¢{x,Q). Obviously
o) 15 intrinsically non-perturbative. However its variation with Q can be
studied perturbatively. To show this, we differentiate Eq.(3. 15) with
respect to QZ:

O

2 (0,0) = o3 L ol (,0,) = pleg (@) 0 (6,0 (3.17)
3Q z5") 167 |
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where y is the anomalous dimension associated with ZéQ),

¢ 24749 = vty Y
(3.18
_ (@ 1+ (1-y)° 2 (Q) o
= -5 fay L2020 4 oZ(0))y 2
O

and C = (nE-—I)/ch==4/3. The first term in (3.17) represents the

change in the probability amplitude ¢ due to the addition of more qq

states as Q increases, while the second reflects the loss of probability
from those already present, as ZéQ) decreases. By using the bound state
equation as in Eq.(3.7), we can express w(A)(x,qL) in terms of ¢(x,Q).

To leading order we need only consider one-gluon exchange between the quark

and anti-quark, which gives (Fig. 16)

(@) 1
Z 4dna(Q)

2 -y (x,q) = —3 Y7 (x.y) olys 3.19
g o) = ly(]_y) (x¥) 6(5,0)  (3.19)

where again as(A) is converted into aS(Q) by propagator and vertex
corrections. Substituting into Eq.{(3.17), we finally obtain the evolution
equation for ¢
' 1
Q® 25 6(x,Q) = QS(Q){J Y v(x,y) 6 (y.0) - o(x,0)} (3.20)
aQZ 4 .Y(]".Y) '
0

where

Vix.y) = ch{xu-y)e(wx)[a_h,ﬁ g%x} e RIS

PR AP P QRN AT O RSN NTORR B S P AL I 0 1 APSECI A 00100 10RO P ARER HEIRS O BP0 NPT SR 0 4R 1M 111 UMY PSP W S 1B
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with
A k] = 3 - X
yi]-y; - y%]-y; xi]—x;

and h, h the quark, antiquark helicities.

The evolution equation (3.20) completely determines the Q dependence

of ¢(x,Q); given ¢(x,Qo), #{x,Q) is determined for any other Q by
jntegrating this equation, numerically or otherwise. However it is
instructive to exhibit explicitly the most general { dependencé. |
Using.the symnetry V(x,y) =V(y,x) to diagonalize V, the general

solution of (3.20) is easily shown to be

© 3/2 e “Yn/ fo (3.21)
o(x,Q) 2x(1-x) 2 a C (2x-1)|4n .
n’n 2
n=0 A
3
where
n+1 1 26_h ﬁ )
Y, = CF{'I +4 kzz i -(W} >0 (3.22)
o2
Bo = 11- IN¢

and ne is the number of quark flavors. (AS here is the scale appearing
in the running coupling constant - i.e. aS(Q2)==4n/BO-2n(02/A§) — and
has nothing to do with the ultraviolet cut-off A). By combining the
" orthogonality condition for the Gegenbauer polynomials 02/2 with the
definition (3.2) of ¢, we arrive atl an interpretation for the expansion

constants in (3.21):
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2)™"n/ 8o 1
an[anEJ = ity ax 2ex-1) s(x.0).

0

‘ 1 2
d"k
_4(2n+3) L 3/2, v (Q)
240 (Tin idx [;g;g o (2x-1) v (x,k,) (3.23)

_2(2n+3) 1

- (Z2+n)(T+n) S
C

<0] TON vsc2(15)p(0) |m> (@

where the matrix element of the local operator is evaluated with u]travio1et
cut-off Q. Thus to leading order the pion's distribution amplitude has

the simple form (P¥=1) 17

o(x.Q) =x(1x) ¥ Zene ) 1 ¢3/2(001) <o) vt 25 0@ (3.20)
n= 4L
C

Expansion (3.24) can also be derived directly from the operator product

expansion of Eq.(3.2b) since the quark fields are on the 1ight-cone

2=0)_18

(zz==z+z"-z This analysis has an important consequence which follows

from (3.22). For very large 02 only the n=0 term remains in (3.24), so

that
Y+Y5 Q) _ 3
<’1>(><,t1)*’~i x(1-x) <0J§ —=p}m>*Y = == f_ x(1-x) (3.25)
Vnc i Ve , Jnc T

—i.e. ¢(x,Q) is completely determined for very large Q. Actually this is

just another way of writing Eq.(2.16), which gives a sum rule for $(x,Q):

1 f
axs (x,0) = (3.26)

o 2/ng

Given the shape of ¢$(x,Q), this equation normalizes if for any Q.

R ot d bl by b Lt D g LY A D LI T T T T T A e L L i T TR reppwem———— 1IN A 0 60 T UL 0 ) s g
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Notice fimally from Eq.(3.19) that w(A)(x,ql) does in fact fall as
I/qi, up to logarithms, as qf.grows. The short distance behavior of the
Fock state wave functions is perturbative in nature, and as a general
rule is crudely that of simple Born diagrams in perturbation theory. In
particular wave functions are not exponentially damped at large q

(> a GeV) , .as is frequently assumed in phenomenological analyses.

D. Complications

Exclusive processes at large Q2 involve interactions of the hadronic
constituents within a small volume near the light-cone, as is evident
from Egs.(3.24) and (3.2). This is due to the dynamical behavior of Ty,
all of whose internal propagators are far off shell (mQZ), and not simply
due to kinematics as in deep jnelastic scattering. Unfortunately the x
integrations for certain processes can inciude points where internal lines

in TH go on-shell. In that case the long distance behavior of the theory

obviously becomes relevant, and factorization as in Eq.(3.1) is jeopardized.

These singularities in TH can be of two types:
a} endpoint singularities which arise as x+0or 13
b) pinch singularities which occur in the middle of the integration
region — i.e. x#0,1.
We examine each in turn.

Endpoint singularities

The analysis of the qq contribution to EH(QZ)(Eq.(3.5)),

Vod%k s
fox [=— S gk + (-xa M (k)

S

sz g

. AT T

e
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depended upon the fact that either k, or KL4-(}»x)qL.was of O(ql' —j.e.
large momentum fiowed through one or the other wave functions. This is

obviously the case unless

1-x < (3.27)

- JPS
5

2 4" <kf? is the mean kf_

where A in the wave functions. Within this infini-
tesimal region, called the endpoint region, both wave functions have small
0»12) transverse momenta. The form factor receives a contribution from

this region of order
| 1

F(Q2) j dx [ (x,2) 2
EP : 3
q

N
ol

when w(A)(x,A) vanishes as (1-;()(S for x+1. This mechanism, in which

| spectator quarks are stopped rather than turned, was actuaily the first
parton model suggested for hadronic form factors.E3 However, we expect the
wave function's behavior to be perturbative when x is infinitesimally
close to 1 (Fig.7), as discussed in Section 2.D (leading to Eq.(2.20)).
Perturbation theory implies =1 and thus the endpoint contributions fall
as (A/Q)3, down by a full power of A/Q relative to the hard scattering

contributions (Eq.(3.1)).

The analysis is similar for baryon form factors where
T/
2 A 2
F@gp ~ [ax, [ ax, 190 e )
14 ©

- B

e Lol G I T T R R AT TT 0 T DT T T T TPURYIL U IRIECROIPL R | AR A e O A ]S LU D AR DI N R e L L N g R LD G B e n b s ow e e i o e e
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Perturbation theory again gives &=1, but here the endpoint contribution
seens to be suppressed by only two powers of aS(AQ) relative to the hard

scattering prediction:

i)
Fep " g (AQ) Fg

In fact the suppression is prgbably much stronger. The struck quark
<k &>
line is off shell by only |ef ~ lf; v P\Q<<Q2 in the endpoint region.

Thus radiative connections to the quark-photon vertex include double
logarithms of 02 (i.e. aS(RnQZ)Z) which exponentiate when summed to all
orders, giving a quark form factor. This form factor falls as a power of
A/Q, further suppressing the endpoint contribution to the form factor.19
It must be emphasized that such 'Sudakov form factors' involve very
Tow loop momenta (~ AZ) and may not be reliably analyzed in perturbation
theofy. On the other hand, the physics of a quark form factor which falls
with increasing 02 transcends perturbation theory. A near on-shell
(relative to QZ) quark when struck by a highly virtual photon wants to
radiate gluons, the amount of radiation increasing the more drastic is

the change in the quark's state of motion.. Thus the quark scattering

amplitude is suppressed when such bremsstrahlung is prohibited, as it is

in exclusive processes; i.e. we see the 'shadow' of the inelastic channels.

Note that double logs and Sudakov form factors do not appear in hard
scattering amplitudes. This is because the collinear bunches of partons
répresenting each hadron in TH are color singlets, and the soft gluons

which build up the Sudakov form factor decouple. In short, color singlets

oA i et e map
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need not radiate copiously when struck. In the endpoint region, however,
the struck quark behaves as though isolated from the others (over time
scales ~ 1/2Q), and a Sudakov form factor does appear.

Finally notice that the presence of strong sensitivity to the
endpoint region is usually evident from an inspection of the hard
scattering amplitude, even in leading order. For example, TH(y,x,Q) for
a pion (Eq.3.14) has linear singularities as either of x or y tends to 1.
However the wave function's boundary conditions require that ¢ﬂ(x,0)
vanish 1ike a power as x+1, so that Eq.(3.1) for FF(QZ) never diverges.

By contrast, the proton's magnetic form factor has a hard scattering form

8y (%) = Jd’ﬁ dx, deadyz 030 Ty0x7-Q)8(x;,0)

where TH has a cubic singularity as x1-+1. This expression could be
singular even if ¢p vanishes as x]—+1, resulting in the situation

outlined above.

Pinch Singularities

The pinch singularity, first described by Landshoff, is most serious
in hadron-hadron scattering. As an illustration consider the diagram in

Fig. 17a, which contributes to n-n scattering. Three-momentum conservation

requires (s=r‘f+q_2L, t=~Qf_, us= - I”_E: Y_‘L'Q_L_= 0)
X.+X. = X_+X
| a b c d (3.28)
kg +kpke kg = (xo=x)r, + (x4-%,) q,

where ka""kd are the transverse momenta appearing in the wave functions

bl L L L LT DU RTE AR U U T DD TR L L T AT TR T e T M R R R w41 4 RN I A R TR D1 981 1 PRSP T 1 PN PO 1N 1 O 0w
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M (x,k). Clearly at least one of ki,..,kg must be of order s;anie—qi;

for most values of X, ,...xy. Then, as in Section 3.B, the wave function
with large k, is replaced by a gluon exchange to give a hard scattering ampli-
tude, as depicted in Fig.17b (where kg js large). Dimensional counting impliies

3

(o

T, v —

- ) (3.29)
S

BCM; Xa""
for this contribution. Also the energy denominator D in Fig.17a,

_ 2 2, _ e '
D= (Xc'xa) ry+ (xd-xa)q_‘_+2(kd-ka) q-L+ Z(kc-ka) nt ...+ ie  (3.30)
js of order s indicating that the two quark-quark scatterings occur within a-

very short time of each other (At~ 1/s).

Notice however that in the pinch region’

A A
Ixc—xalf;: lxd—xal f-d-l (3.31)

all wave function momenta kg,... can be small (n,kz). Furthermore the
denominator D is of order A/s or less, and can even vanish here. Thus tﬁe
two quark-quark scatterings can occur more or less independently, at widely
separated points. The scattering process is no longer localized, and
factorization of the sort exhibited in Eq.(3.1) does not occur. The s
dependence of the contribution from this region is readily estimated:

a) the quark-quark scattering amplitudes give (]/s)o, by dimensional
counting; b) phase space as restricted by Egs.(3.31) gives a factor
(A//E)Z; ¢) the energy denominator D gives a factor 1/Dr§]/xd§: Thus

the pinch region gives

1 ]
Tos ™ 32 (8 p3X,)
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which apparently dominates the hard scattering contributions (Eq.(3.29)) by
a factor /5.

- Two things work to suppress this pinch contributiqn. First the number
of hard scattering amplitudes is much larger than the number of pinch
singularity diagrams. More important]y{ perhaps, radiative corrections
to the individual quark-quark amplitudes build up Sudakov form factors
which increase the effective power of 1/s to ru%u+4 Ce/8 4n 2n/f§77i(«+m
as [tfvs+»); these corrections do not cancel here because the quarks
and antiquarks scatter separately, and not together as color singlets.

So ‘the pinch region (3.31) is completely suppressed by Sudakov effects.

Mueller has recently pointed out that a contribution still remains for

hadron-hadron amplitudes from a region intermediate between the pinch

2

region and the hard scattering region (e.g. for ky

q,AZ(s/AZ)G 0<s<1).
This results in a small correction to the power law predicted by
dimensional counting; for example, pp elastic scattering at wide angles

"9'7, rather than s'l0

should fall off as s as predicted by Eq.(3.3).
The conservation of hadronic helicity is unaffected by these corrections.
When computing hard scattering contributions, pinch singularities
appear as singularities in TH(xa,xb,..,Q)at points XysXps... away from the
endpoints 0 and 1. The x integrals, with the distribution amplitudes,
are.then singular. 1If this singularity is conly logarithmic, the integral
is properly defined by a principal value prescription, thereby discarding
.the imaginany.pért of the amplitude (which is Sudakov suppressed). The
pinch singularity causes no problem in this case. However, if the x

integrals have power-law divergences, as in the mm amplitude discussed
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above, these must be cut-off by explicitly including Sudakov form factors
in the pinch region (as always, Sudakov effects go away in the hard
scattering region). Only the power law divergences Tead to a modification
of dimensional counting.

We end this section by tabulating the singularities that can occur

for a variety of exclusive processes (M= meson; B=baryon):

Pinch Singularity

Process E?ﬂﬁﬁ};ﬁity Power  Logarithmic
eM-> eM

Yy M

vy MM

eB- eB X

vy~ BB X

YB+vB X X

B+ MB X X

MB - MB X X X

BB~ BB X X X

Again we emphasize that the results of the previous sections are modified
only for amplitudes with power-law pinch singularities, and even then only

s1ightly modified.

4, HEAVY QUARK ATOMS

A. The Spectrum

Striking progress has been made in elucidating the structure and,
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properties of mesons containing heavy QQ pairs, such as the y,p',... with

cc pairs, and the T,T',... with bb's. The most prominent features of the

spectra for such states are

a) only states having QQ quantum numbers have been found — for example
the levels of the cc system are in one to one correspondence with the
Tow lying levels of positronium (curiously, many more states of
charmonium have been produced experimentally than of positronium);

b) the heavy guarks move with non-relativistic velocities

2/C2> n _&Zw " .25 for '}

<VQ MQ .1 for?T

where Ae~500 MeV is the méss difference between radial excitations;

c) non-relativistic potential models for QQ pairs bound by an
instantaneous interaction describe the spectra extremely well (better
than 10%), and furthermore different parameterizations of the effective
botentia] agree over distance scales relevant for the observed states

(Fig. 18).20

This evidence strongly suggest that the QQ Fock state is the dominant
component of heavy guark mesons. It is this feature more than any other
which has allowed us to make such progress in understanding these mesons.
QQ predominance is obviously mandatory for the success of potential models,
relativistic or non-relativistic. Furthermore, as we shall see, it is of
critical importance for the study of the varicus inclusive and exclusive
decays of the heavy mesons.

Why are heavy quark mesons so different from w's,p's, ...? Why are

IR 11T i UL UL BT NIRRT DT TRIY LT L L TRy
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there not strong admixtures of purely 1ight-quark Fock states like qq, or
of states with gluons 1ike QQg? The coupling between QQ states and purely
light-quark states can almost certainly be computed perturbatively since
the Q and Q must annihilate, and this can only occur over a very short dis-
tance (~ 1/MQ). For example the gq wave function for a y or T is given
to leading order by the amplitude in Fig. 19a; the probability for finding
such a state is ~ ag(MQ)<<‘1. Of course, this is just an examplie of the
0ZI suppression of quark flavor mixing. Similarly the amplitude for

QQg, with a hard gluon, is perturbative (Fig. 19b) and small. Perturbation
theory fails us only for states in which the QQ pair is accompanied by
soft gluonic excitations (and the qq pairs they might produce).

The amplitude for such soft gluonic excitations has the usual form

(Fig. 19¢)
bigg ™ & éoﬁgxgﬁglévm@ (4.1)
g [ -
9 ooty W@ G

where oV is the potential coupling quarks to the gluonic field {g repre~

sents a general gluonic excitation here). Gauge invariance requires that

SV ~ 9 ﬁi-ﬁ7MQ for any gluonic field configuration (perturbative or other-

Q

wise), and thus matrix element <QQg|&v|QQ> is of order gs<vQ/c>, as is
typical of E1 multipole transitions?] Squaring wqag and summing over al}l
QQy states with soft ‘gluons', we find that the phase space cancels the

energy denominators, leaving a probability

- 2
P(QRg) = £ |¥nmql

Qg QQg
(soft)

2,2
v Gg <vQ/C > (4.2)
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for finding a QQ together with any soft excitation in the color fields.

2
Q

noh—reTativistic QQ bound states — slowly moving quarks don't radiate

So such non-perturbatiﬁe higher Fock states are suppressed by <v /c2> in
much.
(An analogous situation arises in the hydrogen atom, which has a

small admixture of epy Fock states with P(epy) ~ a(ve/c)2 " a3

for soft
'photons. These Fock states, with photon energies of order the binding
energy (kyruazme), are directly responsible for the Lamb shift, which is
then readily estimated: AELS'DP(EPY)<EPY]HlepY>’baEka2m). Clearly the
_hydrogen atom is well represented by just the ep Fock state to a very
high degree of accuracy.)
Armed with this intuitive understanding of QQ systems, we now examine
a variety of detailed aspects of these mesons and their interactions, with
the dual purposes of a) developing further intuition about the

non-perturbative interactions at work in QQ mesons, and. b) using QQ systems

as a testing ground for perturbative QCD.

B. The Potential

| Given that higher Fock states are not very important, we expect a
QQ interaction potential which is instantaneous — retardation effects
should be unimportant (cf Eq.(2.7)). We have some guidance in constructing
this potential from strong coupling (r-+) and weak coupling (r-0) expansions

in QCD,
V(Y‘) + |Kr reo
as(l/r) r-+0 (4.3)
r. 1

though it is clear that neither form adequately describes current data.
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However surprisingly simple interpolations for V{r) work very well. One

of the best is due to Richardson who takes (in momentum space):

o 2
o q n(1+g /AS)
> |(an)2a® 2.0 (4.4)
> 9 =
B
4ma (q)
g »+o
?
\

A refined version of this potential gives a good fit to all ¢y and T energy
levels with a QCD scale parameter (in MS scheme) A > A ™ 200-500 MeV
which is in reasonable agreement with other determinations of Aﬁguzo
However there is very little theoretical justification for such potentials,
so a measure of skepticism is well warranted. One thing is clear though:
the QQ interaction is still definitely non-perturbative even at
szu<P2>Tﬁb 2 GeVz. Thus any detailed perturbative calculations is
probably unreliable at these Qz‘s.

There has also been recent work on the spin dependent interactions in
heavy quark mesons. Buchmﬁi1er et al have investigated the hyperfine
splitting of s-states in perturbation theory (Fig. 20a). They find a

potential (in momentum spac‘e)22

3 oste) o
Vypsla) = g™ MS" 51°5511
; (4.5)
ops(a) ©5 21 2 2
= [-3']86.:"+ 78 ' E wn(q /MQ)]} .

%
{
b
&

i

+

e S
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for s-states (80= 11 -%nf with nf=number of massless quark flavors and
o designates the MS definitions of as). This result is intefesting in
several ways. The first is that it works. Using measured ratios of thé
¥-n, mass difference to the widths I'(y+ee, up) and F(ncfrhadrons), these
authors obtain a QCD scale parameter Aﬁg = 160+20 MeV (with unknown
theoretical errors). This is again in good agreement with other
determinations. The next point of interest is that the hyperfine inter-
action is not really a short disiance effect. From Eq.(4.5), the leading

order shift is proportional to

% a3y (k) ags( R3] wla)

and so the typical momentum in amg-is of order the mean QQ momentum (and
not Qﬁj' Giveri that the spin independent interactions are non-perturbative
for w;s and T's, there seems a 1ittle a priori reason to use perturbation
theory for the hyperfine interaction in these mesons.

Finally the 2n(q2/MS) in Eq.(4.5) indicates sensitivity to low
. momenta. Such logarithms are generally accompanied by an additive constant
of 0(1) due to an infinity of diagrams — in this case diagrams in which the
Q Q interact arbitrarily often while a soft gluon (kgqua, the level spacing)
pfépagates near mass-shell (Fig.20b), in close analogy to the QED Lamb
Shift23 The calculation is not complete until these have been computed.
That such behavior should appear in the QQ hyperfine interactions is
not surprising given that the interaction of a quark with a uniform external
chromomagnetic field is similarly non-pérturbative.z3 Like the Lamb shift,
_thesé terms are due to the coupling with higher Fbck states — here to‘

QQg states where the gluon is soft. It will be very interesting to see

R e LT L L L L L T T T g RN
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how well Eq.(4.5) describes the T-nb splittings, since relativistic
corrections and non-perturbative effects here are much less important
than at the ¢. In the meantime, a better theoretical understanding even

within perturbation theory is needed.

C. Inclusive Decays — s-states

The total decay rate of the T into hadrons is particularly simple
to analyze because the annihilation of the heavy quarks occurs over
distances much smaller than either the average bb separation in the T,
or the typical distances over which the final state quafks and gluons are
converted into hadrons (i.e. the color confinement radius). As a result,

~the leading order amplitude factors,24

lvnr(0) 1% T(bb>ggg) P(ggg~ hadrons)

2 .
(@)1 l‘—‘%—@ﬂ SR (4.6)

where the factors have the following interpretations:

PO(T-+hadrons)

]

1t

IwNR(O)l2 — the non-relativistic wave function at the origin,
which is the probability that the quark and anti-quark
are sufficiently close to annihilate (i.e. rn:T/Mbﬂ:O'
relative to <rzr);

r(bb +ggg) — the decay rate for a stationary (since <PS%,<<MS)

QQ pair into gluons, which can be computed

perturbatively (Fig.2la) since the decay occurs at

short distances;
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P{ggg -~ hadrons) - the probability that the gluons convert into
color singiet hadrons (=1), which can only
factor in this way when there are no strong
resonances between the initial gluons (i.e. when
the final state configurations are predominantly
jet-1ike with three gluon-jets).

Here the long distance structure of the meson figures only in the
overall factor |wNR(0)|2.

The corrections to this simple result come from several sources.
There are O(VE/CZ) corrections due to relativistic kinematics, as well
as from spin-orbit, spin-spin and similar interactions. These might
contribute at the 10-20% level for the T. Potentially more serious are
.contributions due to higher Fock states — e.g. decay through the channels
bbg -+ ggg where the gluon in the initial Fock state is very soft {vae)
and non-perturbative {Fig.21b). Such a contribution is of order the

probability of finding a bbg in the T (Eq.(4.2)) times the decay rate

- I'(bbg+ggg). The final annihilation of the heavy quarks is suppressed

by <V§/c2> here, because the quarks are in a p-state after having emitted
a soft gluon to form the bbg state (via an E1 transition), and p-state
wave functions vanish at the origin (Section 4.D). Thus the contribution
to T decay from these Fock states is most Tikely negligible, being only
bf'ofder 25
| — — ag(te) y.a

P(bbg) I (bbg-ggg)~ 5 M) <> T <<, (4.7)

where T is the leading order result (4.6).
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One final source of corrections to (4.6) are the radiative corrections
to the rate T{(bb-ggg) (these allow bb+gggg,ggqq as well). The leading
radiative corrections involve relativistic loop momenta fuMb) and so the
dominant interactions are perturbative. These contributions have recently

been computed26

2 - :
(T hadrons) = vyg(0) [ l‘%lmé—g)— %(M)[’I +-O£—M—friﬂl{ -19. 3(5)
{

T

+-23- 8,[1.154(5) + an(2m/m )} + ] (4.8)

where again B = H-—%nf and ne js the number of Tight-quark flavors

(=4 for T). - 1In this equation, we assume that the wave function wNR
contains the effects of all relevant long-distance non-perturbat1ve QQ
1nteract1ons, and of the non-relativistic Coulomb interaction (corrected
for the running coupling constant). This needn't concern us however if
WE compare the decay rate into hadrons with the rate into u W pairs,

which from a similar analysis is given by

2
+ - N’NR(O)I O‘M—
T(T>u u )=]61TE§ GSED——-———Z—*- 'I-lg——séﬂl
Moy
~ where e, is the quark charge (in units of e). By forming a ratio, all

- dependence on YNR cancels, leaving an unambiguous pred1ct1on of perturbative

QCD: 3
_ T(T - hadrons) _ 10(r®-9) o5 M) {1.+Eﬂ§£ﬂl {-14.0(5)
P{To>uu") 81Tfeg ®QED "

+ 35 [1.154(5) + n( 2/M,)]) l (4.9)

e
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Equations {4.8) and (4.9) are independent of the choice of M(me).
up to corrections of 0(aﬁ§1w2). A particularly convenient choice for

comparisdn with data is M==0.48(2)MT as then the O(aﬁ§0 corrections in

| Eq. (4.9) vanish (although this may be somewhat misleading, as discussed

in Appendix B). Excellent data exists for this ratio providing one

of the best determinations of the QCD coupling constant and scale

barametér:
0.012
(0.48 M) = 0.158"
TS TT34 0.010 (3.10)

where the errors are experimental. Similar results are obtained for y and

w"decays, although v2/c2 corrections could be gquite substantial for these
(~ faétor of 2?). Indeed the consistency of the ¢ and T analyses implies
empirfca1 limits on the uncertainties due to v2/c2 corrections, higher
Fock states, and higher orders in o these limits are crudely x20%, for
the decay rate, i.e. on the order of the experimental uncertainties.

A number of other s-state decays have been analyzed, of which

pefhaps the most interesting for QCD is the rat1027

2

(1. op(Mn,) ore{Mn..)
raczhadrons) - 2, M 1y Bt s+ fey| (aD)
c e, %QED

- [SeVera] of these rates are tabulated in Table I. Wave functions from

‘ Ref.ZO are used to predict absolute rates.
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TABLE T

Process Theory (keV)
r(T - hadrons) 2846
r(T>utu") 1.2+0.2

r{T+vy +hadrons) 0.9:0.2

| r(nb-¥hadrons) 621
r' (T +hadrons) 80140
T(p>u'u’) 5+3

T{y+vy +hadrons) 7.5x4
r(nc->hadrons) 17+8 MeV

Experiment (keV)

277
1.1620.15

44+6
4,.8:0.6

< 20 MeV

| Estimates for the decays of heavy quark mesons. The

theoretical errors represent crude estimates of the

. s 2,2 .
uncertainties due to v /C ,... corrections.
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D. Inclusive Decays — P-states

As mentioned eariier, hadronic decay rates for heavy quarks in a
p-state are suppressed relative to s-state rates by <v2/c2>; the decay
rates are proportional tolé%-wNR(0)|2 rather than ]wNR(O)I2 which
vanishes for p-states. Because of this, decay via higher Fock states
1ike QQg is not suppressed at a]]?s For example, the P(1+') state decays

- into three gluons in lowest order with a rate of order <v3/c2> I'(s~+ggg)
where T(s-+ggg) is the rate for an s-state. As for s-states (Section 4.C),
we estimate the rate due to Fock state QQg by P(QQg) r(QQg~ggg), but
here the quarks in the QQg state are in an s-state (Fig. 21c) and the
annihilation is not suppressed. Thus P(QQg) r(QQg-ggg) is of order
<v%/c2> I'(s->ggg) as well, in marked contrast with Eq.(4.7); and soft
n0n~perturbative gluonic excitations (Fig. 21c) contribute even in Teading
order for this p-state.

This sensitivity to soft gluons is readily apparent in perturbation

 _theory. The leading order decay rate for the P(1+') state, for example,
.is proportional to ag Rn(MQ/s) where ¢ is the binding energy?g Just as
for the hyperfine interaction (Section 4.B), the presence of a Togarithm

| indicates infrared sensitivity. Furthermore even in perturbation theory
there will be an infinity of diagrams which contribute to the same

'order.(Fig. 21d), as was the case for the hyperfine structure. These
logarithms, and the difficulties associated with them plague all

4 p—state_decays, rendering the theory of these decays much less reliable
“than thét for s-states. On the other hand an understanding of the gluonic

excitations in heavy quark systems is desirable and the properties of
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these decays could provide useful insight.

£. QED Radiative Decays

Perhaps the most serious outstanding probiem for the standard
analysis of heavy-quark mesons is the failure (by factors of 2-3) of the
predictions for El transitions like ' =>v#4. The leading order effect
comes from the diagram in Fig. 22a The Toop integration is completely
non-relativistic so the wave functions enter in precisely the region
where they are best known.

There are basically two sorts of corrections which might arise.
“irst there are kinematical corrections of O(VS/cz) due to relativity.
These might well be very significant for cc states, but probably not for
bb mesons. Secondly there are gluonic corrections to the basic diagram
(Fig. 22b); but these are really just corrections due to higher Fock
states — Q0g, QQgg,... — as illustrated in Fig. 22b. Remembering that

it is the non-relativistic region that is probed by these decays, these

Fock states can hardly be important here and unimportant in determining -

the spectrum. In other words corrections of this second type can only
be important if there are significant retardation effects in the basic

Q0 potential. E1 transition rates for the T system which disagree with

~ theory by factors of 2-3 would seriously challenge the validity of the

3 sfmp1e qQ mode} currently accepted.

F.  QCD Radiative Decays

The coupling of soft gluonic excitations to the Qﬁ'system_was an

jmportant element in much of the previous discussion. Our intuition

AR S SRR 3

N T

T T
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concerning this coupling can be directly tested by examining QCD radiative

transitions like (Fig. 23)

T'+T + gluons
s T 5T)

Some time ago Gottfried pointed out that the gluons in such a process
have wavelengths much longer than. the mean radius of the meson. Thus
the gluon-meson coupling might be dominated by the leading terms in a
muitipole expansion of the gluonic fie1d?0 For example, ¢'-ymm would
_inyo1ve a double E1 transition, while ¢'-yn would proceed via an MIM] or
'E]MZ transition. This idea implies scaling relations between different

rocesses — e.g.

2

T 1

16

r{r'+Tam) |77

AR B PR

since an E1 coupling is proportional to r; also T(T'~+Tn)<<T(T'~+ymm)
because an MIM1 or EIM2 transitions is higher order in the multipole
expansion than an E1E1 transitions. These relations work surprisingly
well.

Recently Kuang and Yan made a detailed model which incorporates
~ffects due to the multipole couplings, phase space, PCAC, the QQg inter-
mediate states, and a variety of QQ potentia]s.31Using data for
y' -+ yrm,yn as inputs they pfedicted rates, mn mass distributions, and
angu1ar correlations for a number of T transitions. Some of these
predictions are shown in Table 1I, together with recent experimental results.

The agreement is impressive given our primitive understanding of these
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Theoretical and éxperimenta] results for QCD

TABLE 11

radiative transitions in the T system.

Transition

P oatrty
T;+Th
B
T"+Tﬁgﬁ“

T" +Tn
T“é+(1]P])ﬂw

(2 % ) (1's )

T'(keV)

3-5

.01

.2-.6
.3-.5
.003-.005
-2
_6-3

Branching Ratio
(Theory)

Branching Ratio32

(Experimental)

17-20%
.04

1-4

1-2.
.02-.03

TR A R T
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non-perturbative interactions; and it lends further credence to our

previous discussions of QQg Fock states in heavy-quark mesons.

G. Summary
As we have seen there is abundant evidence suggesting that the v
and T systems are prédominant1y Qﬁ'bound'states with little admixtures
of higher Fock states. The quantum numbers, the succesé of the non-
relativistic potential models, and the successes of the multipole
' exh&nsion for hadronic transitions all argue in favor of this picture.
Given this, we can use QQ states as a laboratory for studying and testing
..QCD. The spectrum of states in effect measures the Q§ potential as a
'function.of r. The s-state decays determine the QCD coupling constant
and provide information about the gluon and gluon jets. In some ways
these systems are thé best for testing QCD because we know so much about
their internal structure. The uncertainties due to bound state effects
in T decay are probably much better under control than those due to
higher twist corrections in deep inelastic scattering. Finally these

- systems may provide useful] sources for exotic physics —e.g. tt -»Higgs +vy.

Note added in Proof: A detailed analysis suggests that higher order

~ diagrams such as in Fig. 20b. do not, in fact, contribute to the O(as)
corrections in the hyperfine splitting for QQ mesons. While individual
diagrams seem important in Feynman gauge, these cancel when all diagram$
are considered; such spurious terms never appear in Coulomb gauge. The
- discussion of the hadronic decays of p-states (section 4d) remains

unchanged.
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Appendix A — Light Cone Quantization and Perturbation Theory

In this Appendix, we outline the canonical quantization of QCD in
At=0 gauge. This proceeds in several steps. First we identify the
independent dynamical degrees of freedom in the Lagrangian. The theory
'is quantized by defining commutation relations for these dynamical
“fields at a given light-cone time 1=t+z (we choose T=0). These
commutation relations lead immediately to the definition of the Fock
state basis. Expressing dependent fields in terms of the independent

_fie]ds, we then derive a Tight-cone Hamiltonian, which determines the
evolution of the state space with changing t. Finally we derive the
rules for t-ordered perturbation theory.

The major purpose of this exercise is to j1llustrate the origins and

ture of the Fock state expansion, and of 1ight-cone perturbation theory.
Je will ignore subtleties due to the large scale‘structure of non-abelian
gauge fields (e.g. ‘instantons'), chiral symmetry breaking, and the like.
Although these have a profound effect on the structure of the vacuum,
the theory can still be described with a Fock state basis and some sort
of effective Hamiltonian. Furthermore the short distance interactions of
the theory are unaffected by this structure, or so at least is the central

ansatz of perturbative QCD.

Quantization

. The Lagrangian {density) for QCD can be written

L= - ste(PVF ) + T (0 - m)y (A.1)

e -

e T TR T
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where F*V = 3HAY = 3¥AM + ig[A",AY} and DM = % - gA". Here the gauge
field AY is a traceless 3x3 color matrix (AY = EAa”Ta, Tr(TaTb) = %Gab,

a
[Ta,Tb] = ‘icabcTc,...), and the quark field ¢ is a color tripiet spinor

_ (ffpr simplicity, we include only one flavor). At a given light-cone time,

say t=0, the independent dynamical fields are ¥, = Ay and Al with

.conjugate fields iwf and 8+Al, where A, = yoyi/Z are projection operators

sA =0, Ai =ML A +A_=1) and a* = 3%+ 3°. Using the equations of

Jtion, the remaining fields in £ can be expressed in terms of Vs Ai:

Hi

V=AY =L [iD, 5 + en]y,

i3
" 1.7
v_ - "1_“5;;9 Y oy Uy
..}.
A =0 (A.2)
-l 2 2 i i toa, 3
A" = -i—a;r—wL A +(Ta§)—2-[[13 AALT+2y, T2, T%)
= K+ Aopetalal ez oI 12y, 12
= (1'8+) 4% + +
with g=v° and 3 = y%,.

To quantize, we expand the fields at t=0 in terms of creation and

annihilation operators,
+,2

dk"dk_ ik
Yy, (x) = J —+—'-'3—E{b(£,)\)u+(_lg,)\) e
' + k- 16m™ A
k>0 ike-x
+ dik,0) v, (koae™ % (A.3)
+
+.2 T=X =0
i dk d7k, iy o-ikex
A (x) = J =3 E{a(E,A)E_L(A) e + Cc-c-}
4 k167 A +
k >0 T=x =0 ,
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{d(k,2), d"(RA")}
[a(k,A), @' (RaA")] (A.4)
1659k 53 (k - p)sAN'

{b{k,A), bl (RsA*)}

i

{b,b} = {d,d} ee. =0

 where ) is the quark or gluon helicity. These definitions imply canonical
 commutation relations for the fields with their conjugates
(T=x+=y+=0, gf(x',%k), S
(T () = 1,80y
(al (x),5% A (1 = 167963 (x-y) (A
As described in Section 2.A, the creation and annihi]ation operators
‘sefine the Fock state basis for the theory at t=0, with a vacuum 10> defined
such that bj0> = d]0> = a}0> = 0. The evolution of these states with t is
governed by the Tight-cone Hamﬂtom‘an,'HLC = P, conjugate to T.
~ Combining Egs.(A.1) and (A.2), the Hamiltonian is readily expressed in
terms of m+ and Al:.
Hie=Ho * v
- where

AT

Ho = Jd35 {Tr (3]A33,A0) + Wi('ilal_'“ﬁsm)“]?“a;“f o) v}
19

o % Zond

A 161~k
calors k2+m2

+ dT(kaAMd(k,N) 5
Kk

} + constant

= I i "{*(kx)(kk)*w*(ubkx | -
= I_T'i'— a K a Ko E AN ) ) (__! ) k+ (A.Ga)
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is the free Hamiltonian and V the interaction:

2
3 v TN
V= Jd xizg Tn(IMRUR LAD - G (AR LA )

+ g oAy + gZTr([ia"*K“,ﬁu] (.;+)2[i3+ﬁ\’,5\,]) (A.6b)
1

+ g%y . Ko - a% o' "(""g‘l)—z [13+ﬁu,ﬁu])1}
i

+.a 1

2
+ 9‘-?—“11)—'7 T w _(___._:j_z 'W'Y+Taw}

with § = y+y, (>pas g-0) and A = (0,A5A]) (A" as g~0). The Fock

states are obviously eigenstates of HO with

k2+m2

_+ - i .+
HO]n. ki’KLi> =3 . ln.ki,gli> (A.7)

i k' |
It is equally obvious that they are not eigenstates of V, though any matrix
"zment of V between Fock states is trivially evaluated. The first three
rms in V correspond to the familiar three and four gluon vertices, and
.tne gluon-quark vertex (Fig. 24a). The remaining terms result from
:substitutions (A.2), and represent new four-quanta interactions containing
instantaneous fermion and gluon propagators (Fig. 24b). A1l terms conserve
total three-momentum k = (k+,El), because of the integral over x in V.
Furthermore, all Fock states other than the vacuum have total k+:>0, since
each individuai bare quantum has k>0 (Eq.(A.3)). Consequently the Fock
- state vacuum must be an eigenstate of V and therefore an eigenstate of the

full light-cone Hamiltonian.

Light-Cone Perturbation Theory

We define Tight-cone Green's functions to be the probability

amplitude that a state starting in Fock state |i> ends up in Fock state

PRI | IV P PO 100 - 1) 9 A 10 OO RS (A A A OO0 0 8 A 0 WO 10 9 ORI RN IR 9 9P VDN 1 0 L0 HITE 0 SLEI W R 0 000 0 00000 110 1 R0+ o - o s o 1 e



|f> a (light-cone) time T later

<fli> G(f,is1) = <f| e'iHLCT/2i1>

iy . (A.8)
- i[ge e 2 (s, 13e)<F 1>
where Fourier transform G(f,i;e) can be written
- . 1 .
<f|i>6(f,ise) = <fl-—pg—zp11>
e-HLCHO_l_I
- 1 1 1

= <Flemro, * ewm, | S A, (A.9)

1
v E-Ho+10+ t.

=V : .. |i>
E-H0+19+ e-—H0+10+

+

s pules for t-ordered perturbation theory follow immediately from the

sansion in (A.Q) when (s-l-lo)".i is replaced by its spectral decomposition

. terms of Fock states:

+42 . .
] ) ~ dksd ij In: ks phy><n: gﬁ,xi]
e-H +i0. z I T F 5 2 " (A.10)

i

are in (A.9) the sum becomes a sum over all states n intermediate between
, interactions. To calculate G(f,i;e) perturbatively then, all
<~ordered diagrams (i.e. all orderings of the vertices, as in Fig. 25) must
be considered, the contribution from each graph computed according to the
following rules:
1) Assign a momentum kM to each line such that the total k+’K; are

conserved at each vertex, and such that Ke=ml —i.e. k= (k24-m2)/k+.

With fermions associate an on-shell spinor {from £q.(A.2))



.1 4 2Ry x(4) x =4
u(k,X) :7kT (k* +gm+ GJ_'k_L) i x(¥) A = ¢
or
I S X(+} A = 4
vik,2) = xq:{k -Bm+ ok ) % XM A=

where x(4) = :}: (1,0,1,0)7 and x(¥) = (0,1,0,-1)T. For gluon
)

A

vz
—_

. 26k

lines, assign a polarization vector ¢" = (0, —&_& S;) where

Y (1) "1—(1 i) and ey (+) i—_(] i) 3
E, = o1 = P .
+ 7z L /7

2) Include a factor 6(k’)/k" for each internal line.

3) For each vertex include factors as illustrated in Fig. 26. To
convert incoming into outgoing lines or vice versa replace

 uev TV el
in any of tﬁese vertices.

4) For each intermediate state (e.g., as indicated by dashed lines in
Fig. 25) there is a factor

1

£ - r k4 i0,
interm

'where e is the incident P, and the sum is over ali particles in
the intermediate state.

. d k*d2k
5) Integrate |——*over each independent k, and sum over internal

]6#3
helicities and colors.

6) Include a factor -1 for each closed fermion loop, for each fermion line
that both begins and ends in the initial state (i.e. V....u), and for
-each'diagram in which fermion lines are interchanged in either of the

initial or final states.
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As an illustration, the second diagram in Fig. 25 contributes

y IR —
e(k;-k;) 9 §U(b)¢ (L{‘Kb’)‘)u(a)u(d)t(La'l—(b’A)u(C)
2.2 +  + 2,2 2 2, 2
-z 5-'-‘%— _ Ka=*p c. 3 Ky - (kg = Kup) e- I ik"T J
i=bd| k Ji i=b,c K J1 k;—k; i=a, .k i

(times a color factor) to the qq »qq Green's function. [The vertices for
quarks and gluons of definite helicity have very simple expressions in
terms of the momenta of the particles — see for example Refs. 1,33 }. These
same rules apply for scattering amplitudes, but with propagators omitted
for external lines, and with =P~ of the initial (and final) states.’
Finally, notice that this quantization procedure and perturbation
theory (graph by graph) are manifestly invariant under a large class of
“orentz transformations:
)  boosts along the 3-direction —i.e. ptskpt, p"+K']p', PP, for
each momentum;
b) transverse boosts — i.e. p++p+, p >p +2p <Q +p+02, PP +p+Q for each
1 SR i a
momentum (Q, 1ike K is dimensionless):
¢) rotations about the 3-direction

It is these invariances which lead to the frame independence of the Fock

state wave functions, as discussed in Section 2.A.




Appendix B — Which o ? 3%

A major ambiguity in the interpretation of perturbative expansions
in QCD is in the choice of an expansion parameter. In general QCD
predictions for some measurable quantity p have the form

M M
oM ) asg )

p = CouS(M) {1+ C](M) + ... (B.1)

m

The coefficients Ci(M) depend upon both the exact definition of the running
coupling constant uS(M) (i.e. the 'scheme'}, and upon the choice of scale
M. When working to all orders in aS(M) the choice of scheme and scale is
irrelevant; the coefficients Ci(M) are defined so that p is the same for
=11 choices. However this freedom can be a serious source of confusion in
nite order analyses. Indeed when working to first order, one can set

«1(M) to any value simply by redefining o or by changing M. This
coefficient seems meaningless here. In particular it seems to give no
indication of the convergence of the expansion.

This is in marked contrast with the situation in low energy QED, where

for example the electron anomaly has a very convergent expansion,

9 -2

_ _ o aj2 a
ae =5 §§-[1-0.656[W] + 2.352[ﬂ]

3

T (B.2)

‘while the expansion for orthopositronium decay is much less convergent:

_ o
Toops = To(1-10.3 2+ ...) (B.3)

" The difference in convergence rate here is not an artifact due to a bad
choice of scheme or scale; the coefficients in these expansions should not

be absorbed into a redefinition of «(M) since the running coupling constant
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for QED doesn't run below ete™ threshold.

QED
In QED the running coupling constant has an obvious definition
(%= -4%):
00, (a) = a(Q) -g“‘;;f:z\’/gi - (B.4)

where o is the bare coupling, and d"V the unrenormalized photon propagator

{in Landau gauge)}. The entire vacuum polarization:correction is absorbed

into o{Q). Since the only true ultraviolet divergences in the theory are ﬁf
»ssociated with vacuum polarization, it is only these corrections which
ke the coupling constant run.
Given the definition, we need only determine the appropriate scale
(or scales) Q for a given process. The most naive procedure is simply to
use the full propagator (Eq.(B.4)) for each photon in any given diagram.35 BE
For example, we can replace o by a(Q) {with Q2;=-q2) before integrating
over g in the leading diagram for the muon anomaly (Fig. 27a). All vacuum
larization insertions are automatically incliuded. Unfortunately the
sp integration is then quite cumbersome. However, by the mean value !

*
theorem there must be some scale Q rumu for which the exact result is

*

aP - 2f0]) (B.5a)

u 27 :



where from Eq.(B.2)

a(Q) = - - 2“1 2 ” (B.5b)
| 1 - __[32’n§;-§] - [E] [-Z—Qnme+g(3)-ﬁ]-

w

(For simplicity we are neglecting muon loops and factors of order me/mu
or less in a(Q)}). Scale Q* can then be determined order by order in
perturbation theory by expanding (B.5) in powers of a and adjusting the
coefficients to agree with results obtained from vacuum polarization
insertions in the basic diagram. For example the lowest order electron

Toop (Fig. 27b) contributes

which from Eq. (B.5) must equal
[‘gﬂ,ng——é] % a

5/12 in leading order. With this procedure, the muon

. *
Thus we have =mue
~nomaly has the same expansion to first order as the electron anomaly

Eq.(B.2)) —i.e. to this order we are replacing

'by .
o = o) [ i(Q—o 656 + J (B.7a)
M 2n
* o
where : a{Q ) = — (B.7b)
- 1-24
7 VP
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Intuitively this is reasonabie since if a single insertion gives %?AVP" a
double insertion will give roughly &%Avg]z, and so on. Thus the electrons

modify only the charge and not the physical expansion of au in this order.

0f course this is no longer the case in higher orders, when 'Tight-by-Tight'

diagrams (Fig. 27c) and others 1ike them appear.
*
The optimal scale Q is refined by higher order corrections -
*  5/12 o . i 3 .
Q -mue 1+1.14 §—+ .| — but its expansion is obviously far more
convergent than the original expansion for a,. Also this expansion is
unique. For example, including the -.656 %-from (B.7a) with the

A2 dn u(Q*) (Eq.(B.7b)) would wreak havoc with the next-to-leading

VP =
logarithms of mu/me in higher orders; there is no reason to expect that
the -.656 %—is part of an approximately geometric series of contributions,
unlike the vacuum polarization corrections which must be (for renormal-
izability). Finally when there are several photons in a diagram, each

will usually have its own scale (determined as above). There is no reason

for all running couplings to have the same scale.

Qcb

We would 1ike now to carry these ideas over to QCD. However we
immediately encounter a difficulty. In QCD, the charge is renormalized
not only by vacuum polarization but by parts of the vertex and fermion
self energy corrections as well. 1t seems generally impossible to
separate these latter corrections 1nto a more or less process independent
piece which renormalizes the charge, and a process dependent, u1trav1o1et-

finite remainder; but for processes having no tri-gluon couplings in
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Towest order there is a way, and these inciude almost all phenomenologically

relevant processes in QCD.
For such processes the only ultraviolet divergent fermion Toops

in first order are fnsertions in the gluon propagators. As for the muon
anomaly, the only function of these 1ight-fermion insertions is to
.renormalize the coupling; all such terms should be completely absorbed

into a redefinition of Ctg (or of its scale). - Unfortunately it is less
clear which of the gluonic corrections should also be included. However
only terms proportional to By = 11 -%nf can be absorbed in this order. So
we can use the light-quark loops as a probe, absorbing not just the quark

olarization contributions but the implied gluonic corrections required

.0 give the 11-w%nf dependence — e.g. if the Ayyn. term is due to ne quark

insertions, we take

o = os(Q) {1 +$ (Aypns *+ B) + ...}
_ MS , 3 33
= osl@®) 0+ == (=58 Ap+5 Ap+B) + ...3
~a@ f1+8 (§2-3—AVP+ B) + ...} (B.8a)
where as in (B.7b) ©
N o5 tQ
a(Q) =
1eg2a Y
oZ WP T T (B.8b)

1

o5 (@ exp(3Ayp))

(The last line in (B.8b) is a consequence of the fact that all definitions

of o  have the same functional form in two loops, one definition differing

from the other only by a scale factor)?6 The term %;—Avp in (B.8a) 1in

WW"mm.ml“‘MWWWW'HMWNMWMMWWM‘H‘I'Illlm\mmm\!' D MO PR OO SR PN ORI 0 A) 0 MO OO 10 TR- B0 0 (IPUIIE 1491 P O SR 1l e A6 10 i 0 1 ke ot | ot v 1
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effect removes that part of the constant B which renormalizes the charge.
This procedure determines the natural expansion parameter &(Q) for

the majority of interesting processes iﬁ QCD. Coupling 4 is gauge

invariant, and independent of the scheme or scale chosen for the original

calculation (here we assume) M5). Viewed another way, given a scheme

(MS, MS, MOM, ...) this procedure automatically determines the optimal

scale, Q*==Qexp(3AVP) (where Ayp and therefore Q* obviously depend upon the

scheme chosen).
Processes with tri-giuon couplings in lowest order are more difficult

to analyze because in first order quark Toops appear not only as

bropagator insertions, but also in the radiative corrections to the tri-

gluon vertex. Again it is hard to separate the divergent part of the

vertex (which renormalizes o) from the finite part in any unique and general

fashion. Such processes are discussed eTsewhere.34
To i]Tustrate this procedure and to expiore its implications, we

examine briefly a number of well know predictions of QCD:

ete” s hadrons — The ratio of the total cross section into hadrons to

2)37

\ + -+ -
the cross section for e e >y u 1S (s=E

(E) o
R(E) = 3 £ eg {1+(ﬁF§ + 2%?-(1.98 - 0.115 nf)4-...}

q T
— ~2
La3p el 1+ UEL L E(E) g0+ .2
q q T ,WZ

where &(E) = aﬁg(O.YIE) for four flavors.

Deep Inelastic Scattering — The momenta of the non-singiet structure




7=

functioﬁ Fz(x,Qz) have an evolution equation38
) (1)
2 d Tn "‘MS BBy * Yy
Q dQ I'IM (Q )"' a‘ﬂ‘S‘(Q) {1+ -Y(O) 7 }
n

(Q)
n ~ n
> - ———T[ an(Q) {]"' pos Cn+ R

where for example
8,(Q) = GM'—S'(O.48Q) C,=.27 forn=2
a 0(Q-)= aM—S—(O.ZlQ) C]0=1.] for n=10 .

.. ‘ *
.;;a‘For-n very large, the effective scale here becomes Q ~Q/vn which is exactly

what was found in Ref. 39 by a detailed study of the kinematics of deep

xmeiastm scattering.

”:Il: Decax —~ The ratio of the n. width into hadron to that intoyy is

(Eq. 4.11)
I'(n - hadrons) e
C _ 2 MS 8

(Mnc)
+C0 (Mn){'[-l- 2.46 + ...}

“where here &(M) = og(0.26 M) for three flavors.

g _T;_Qt_e_c_ax The ratio of the hadronic to the leptonic widths of the T (Eq.(4.9_))

: -_-can be rewritten

r'(T - hadrons)
T(T>u'7)

eoul

a(,)
T

Lo LA b L Ll LR UL D TR L LT LR R TE T T B T BT T e e et e e
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where &(MT) = uﬁ§{0.157 MT). Thus the rate into gluens has a large
negative correction with this physical definition of Qg » just as de the
rates for T-vyyy and for o-Ps~>YYY, bath of which are scheme-scaile

| independgnt. Such a correction implies large, positivé terms in higher
- orders, and in fact these are necessary if we are to fit the data —
otherwise the ratioc becomes negative for large . We can still do a fit
if we replace the term in brackets by {1 -§§7 }2 in which case we obtain
Aﬁ§ A 140-230 MeV, which js surprisingly close to our original estimate
(Eq.{4.10))} from this process. This last procedure might be justified
because more than half the negative coefficient comes from a single

" diagram (Fig. 28 ) and this may in effect simply modify y(0). Further

study is cleérly necessary, though b v 100-200 MeV seems very likely.
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Figure Captions

1.  Perturbative contributions to the pion's qqqgqg wave function.
Contributions of type b) correspond to creation of qgqg from the
vacuum, and therefore do not appear in equal-t wave functions.

2. Coupled eigenvalue equations for the Fock state wave functions of
a pion.

3a) Bound state equation for the ee Fock state wave function of
positronium |

b) The two-particle irreducible potential.
4, Diagrams having similar behaviof to wave functions for large k,.
5, Diagrams contributing to the pion form factor.

6. Diagrams contributing to the structure functions for deep inelastic
scattering.

7. Amplitudes whose behavior is similar to that of wave functions
for x-+1

'8, The 7w~y transition form factor.
8. Diagrams contributing to F1TY as qJ:+O.

10. The contribution to F__from the diagram in Fig. 9b.

Y

11. The two-particle irreducible amplitude for y*4-qa-+q§, in the pion
form factor.

12. The qq component of the pion form factor.

13. The unrenormalized hard scattering amplitudes for Foe

14, Vertex and propagator corrections for F“.

15. Hard scattering amplitudes for Y*-fqﬁg-+qa.
- 16. The qq wave function of the pion for qf.= 0? Targe.
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17 a)
b)
18.

19.
20 a)

22,
23.
24,
25.
26.
27.
28.

2=

Diagram contributing to mm elastic scattering.

Hard scattering amplitude coming from a) when kiq,fi, qf:
Various models (see Ref. 20} for the QQ potential, with the

mean radii of the T,T',,¥', ... as indicated. The curves
cbrrespond to 1) a power law potential, 2) a refined Richardson
potential, 3) a logarithmic potential, and 4) a linear plus
Coulomb potential.

Wave functions for higher Fock states in QQ mesons.

Lowest order diagrams contributing to the hyperfine splitting

in QQ mesons.

Diagrams which are typical of the infinity of diagrams

contributing to the O(us) corrections to the hyperfine splitting.

Leading order diagram for T-gluons ( + hadrons).

Contribution to T-gluons from QQg Fock states.

Contribution from Qg states to the decay of p-states.

Typical diagram contributing to p-state decays in leading order.
QED radiative decays of the V.

QCD radiative decays of the T'.

Interaction vertices for QCD.

Diagrams contributing to the qq~ qq Green’'s functioﬁ in‘LéPTh.
Graph rules for QCD vertices in LCPTh.

Diagrams for the muon anomaly.

Diagram contributing to T-g99.
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